
Initial Steps Toward
Verifying the Rust Standard Library
Using Verus
Elanor Tang, Travis Hance, and Bryan Parno

Carnegie Mellon University

Why Verify the Rust Standard Library?

• Safe interface
• Unsafe implementation

Want to provide safety and correctness guarantees

Greater odds
of incorrect

implementation

Greater
severity of

mistake

Impact extends
to most Rust

code

2

pub const unsafe fn from_utf8_unchecked(v: &[u8]) -> &str {
 // SAFETY: the caller must guarantee that the bytes `v` are valid UTF-8.
 // Also relies on `&str` and `&[u8]` having the same layout.
 unsafe { mem::transmute(v) }
}

pub const fn from_utf8(v: &[u8]) -> Result<&str, Utf8Error> {
 match run_utf8_validation(v) {
 Ok(_) => {
 // SAFETY: validation succeeded.
 Ok(unsafe { from_utf8_unchecked(v) })
 }
 Err(err) => Err(err),
 }
}

Safety Depends on Correctness

3

Checks to see if a sequence of
bytes is in UTF-8 format

If so, calls the unsafe function
from_utf8_unchecked()

Performs the unsafe operation
transmute()

pub const unsafe fn from_utf8_unchecked(v: &[u8]) -> &str {
 // SAFETY: the caller must guarantee that the bytes `v` are valid UTF-8.
 // Also relies on `&str` and `&[u8]` having the same layout.
 unsafe { mem::transmute(v) }
}

pub const fn from_utf8(v: &[u8]) -> Result<&str, Utf8Error> {
 match run_utf8_validation(v) {
 Ok(_) => {
 // SAFETY: validation succeeded.
 Ok(unsafe { from_utf8_unchecked(v) })
 }
 Err(err) => Err(err),
 }
}

Safety Depends on Correctness

4

Checks to see if a sequence of
bytes is in UTF-8 format

If so, calls the unsafe function
from_utf8_unchecked()

Performs the unsafe operation
transmute()

pub const unsafe fn from_utf8_unchecked(v: &[u8]) -> &str {
 // SAFETY: the caller must guarantee that the bytes `v` are valid UTF-8.
 // Also relies on `&str` and `&[u8]` having the same layout.
 unsafe { mem::transmute(v) }
}

pub const fn from_utf8(v: &[u8]) -> Result<&str, Utf8Error> {
 match run_utf8_validation(v) {
 Ok(_) => {
 // SAFETY: validation succeeded.
 Ok(unsafe { from_utf8_unchecked(v) })
 }
 Err(err) => Err(err),
 }
}

Safety Depends on Correctness

5

Checks to see if a sequence of
bytes is in UTF-8 format

If so, calls the unsafe function
from_utf8_unchecked()

Performs the unsafe operation
transmute()

Safety of mem::transmute(v) depends on
correctness of run_utf8_validation(v)

Enables greater security

Initial Target: Verifying the String Library

Presents nontrivial verification challenges

6

Challenges: Verifying the String Library

• Reasoning about pointer
provenance

7

Provenance: Captures what
you are allowed to do with a
pointer based on the source

it was derived from

unsafe {
 let block = ptr.add(index) as *const usize;
}

Unsafe, precondition from Rust
documentation involves the
provenance of ptr

Snippet from string standard library

Will talk about why
it is hard later

Will talk more
about add() later

Challenges: Verifying the String Library

• Reasoning about pointer
provenance
• Complex UTF-8 reasoning
• Variable-width encoding of

characters
• Complicated interpretation of

byte values

8

Metadata

Character bits1-byte

2-byte

3-byte

4-byte

Challenges: Verifying the String Library

• Reasoning about pointer
provenance
• Complex UTF-8 reasoning
• Variable-width encoding of

characters
• Complicated interpretation of

byte values

• Low-level bit manipulation

9

Metadata

Character bits

Start of 1-byte character

Start of 2-byte character

Start of 3-byte character

Start of 4-byte character

Continuation byte

Challenges: Verifying the String Library

• Reasoning about pointer
provenance
• Complex UTF-8 reasoning
• Variable-width encoding of

characters
• Complicated interpretation of

byte values

• Low-level bit manipulation

10

Metadata

Character bits

Start of 1-byte character

Start of 2-byte character

Start of 3-byte character

Start of 4-byte character

Continuation byte

Solutions apply to verifying other Rust standard libraries

Overview

• Verus
• Ownership ghost permissions to reason about pointers

• Challenges
• Key challenge: Handling pointer provenance
• Verus challenge: Ergonomically incorporating spec/proof code into

existing Rust code

• What Went Well
• Successful verification of complex functions

11

Our Approach: Verus
• Automated SMT-based verification tool
• Uses ownership ghost permissions which are borrow-checked

to safely manipulate pointers

12

OOSPLA’23
ptr : *mut T

value: T

Track information about
what the pointer points to

fn main() {

 let (p,) = allocate::<u32>(4);

}

Heap

points_to = {
 ptr: 0x1004,
 value: UnInit,
}

p = 0x1004

Verus’ perspective

Ownership Ghost Permissions

13

Address Value

0x1000 -
0x1004 -
0x1008 -
0x100c -

(example simplified for demonstration purposes)

Tracked(mut points_to)

Stack
p = 0x1004

Address Value

0x1000 -
0x1004 UnInit
0x1008 -
0x100c -Signifies ownership

ghost permission

points_to = {
 ptr: 0x1004,
 value: 5,
}

Address Value

0x1000 -
0x1004 UnInit
0x1008 -
0x100c -

fn main() {

 let (p,) = allocate::<u32>(4);

 ptr_mut_write(p, 5);

}

HeapOwnership Ghost Permissions

Stack
p = 0x1004

14(example simplified for demonstration purposes)

Tracked(mut points_to)

Tracked(&mut points_to),

p = 0x1004

Verus’ perspective

Signifies ownership
ghost permission

Address Value

0x1000 -
0x1004 5
0x1008 -
0x100c -

Features of Ownership Ghost Permissions
• Mutability of permission matches

mutability of the pointer operation.
• Lifetime of permission is tied to

lifetime of allocation.
• Erase permissions during compilation.

15

Enforced by borrow-checking
the permissions

fn main() {

 let (p,) = allocate::<u32>(4);

}

 Tracked(&points_to)

 ptr_mut_write(p, , 5);

 deallocate(ptr, 4,);

 ptr_mut_write(p, , 5);

// FAILS

// FAILS

Tracked(points_to)

Tracked(mut points_to)

Tracked(&mut points_to)

(example simplified for demonstration purposes)

Verus: Benefits and Limitations

üCan reason about safe and unsafe code
üHas the automation to scale (~250K total Verus LOC, codebases

up to 60K LOC)
X Needs more features to handle pointer provenance reasoning

16

Verus: A Practical Foundation for Systems Verification

Andrea Lattuada*

MPI-SWS
Travis Hance

Carnegie Mellon University
Jay Bosamiya†

Microsoft Research

Matthias Brun
ETH Zurich

Chanhee Cho
Carnegie Mellon University

Hayley LeBlanc
University of Texas at Austin

Pranav Srinivasan
University of Michigan

Reto Achermann
University of British Columbia

Tej Chajed
University of Wisconsin-Madison

Chris Hawblitzel
Microsoft Research

Jon Howell
VMware Research

Jacob R. Lorch
Microsoft Research

Oded Padon*

Weizmann Institute of Science
Bryan Parno

Carnegie Mellon University

Abstract

Formal verification is a promising approach to eliminate bugs
at compile time, before they ship. Indeed, our community
has verified a wide variety of system software. However,
much of this success has required heroic developer effort,
relied on bespoke logics for individual domains, or sacrificed
expressiveness for powerful proof automation.

Building on prior work on Verus, we aim to enable faster,
cheaper verification of rich properties for realistic systems.
We do so by integrating and optimizing the best choices from
prior systems, tuning our design to overcome barriers encoun-
tered in those systems, and introducing novel techniques.

We evaluate Verus’s effectiveness with a wide variety of
case-study systems, including distributed systems, an OS page
table, a library for NUMA-aware concurrent data structure
replication, a crash-safe storage system, and a concurrent
memory allocator, together comprising 6.1K lines of imple-
mentation and 31K lines of proof. Verus verifies code 3–61→
faster and with less effort than the state of the art.

Our results suggest that Verus offers a platform for explor-
ing the next frontiers in system-verification research. Because
Verus builds on Rust, Verus is also positioned for wider use
in production by developers who have already adopted Rust
in the pursuit of more robust systems.

*Work done while at VMware Research.
†Work done while at Carnegie Mellon University.

SOSP ’24, November 4–6, 2024, Austin, TX, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1251-7/24/11
https://doi.org/10.1145/3694715.3695952

CCS Concepts: • Software and its engineering ↑ Formal

software verification.

ACM Reference Format:

Andrea Lattuada, Travis Hance, Jay Bosamiya, Matthias Brun, Chan-
hee Cho, Hayley LeBlanc, Pranav Srinivasan, Reto Achermann, Tej
Chajed, Chris Hawblitzel, Jon Howell, Jacob R. Lorch, Oded Padon,
and Bryan Parno. 2024. Verus: A Practical Foundation for Systems
Verification. In ACM SIGOPS 30th Symposium on Operating Sys-
tems Principles (SOSP ’24), November 4–6, 2024, Austin, TX, USA.
ACM, New York, NY, USA, 17 pages. https://doi.org/10.1145/
3694715.3695952

1 Introduction

Society increasingly counts on the correctness, reliability,
and security of system software, i.e., fundamental software
infrastructure that includes file systems, operating systems,
databases, memory allocators, and libraries for cryptography
and distributed protocols. Such software is often inherently
low-level (e.g., manipulating raw bytes, interfacing directly
with devices, or operating without a garbage collector), since
higher-level software depends on it for foundational abstrac-
tions, like unlimited virtual memory or reliable operation.
System software must also hit stringent performance targets,
since it sits on the critical path for the software above it. How-
ever, performance optimizations, especially those involving
concurrency, add complexity. Unsurprisingly, these systems
are notoriously difficult to get right.

Formally verifying software is a promising approach for
ensuring its correctness and reliability. Indeed, our commu-
nity has seen a series of successful demonstrations verifying
a wide variety of system software (§5). However, much of
this success has required heroic developer effort, relied on be-
spoke logics for individual domains (e.g., crash safety [1–3]),
or sacrificed expressiveness for powerful automation [1, 4–9].

In our work, we aim to enable faster, easier verification of
rich properties for realistic systems. We do so by integrating
and optimizing the best choices from prior systems, tuning

This work is licensed under a Creative Commons Attribution International 4.0 License.

SOSP’24

Key Challenge: Handling Provenance
• Rust has no formal provenance model
• Many provenance models are complicated
• E.g., tree and stacked borrows

17

‟The exact structure of provenance is not
yet specified, but the permission defined
by a pointer’s provenance has a spatial

component, a temporal component, and
a mutability component.”

—Rust pointer documentation

root

ref1 ref2

ref3

Visualization source: Tree Borrows preprint

• Spatial

• Temporal

• Mutability

Key idea: Abstract over the provenance model

ü

ü

ü

Our Solution: Handling Provenance

18

ptr: *mut T
value: T

alloc_start: usize
alloc_length: usizeprovenance:

Extend ownership ghost permissions
with provenance information

Taken care of by Rust’s
borrow-checker on the
lifetime and mutability
of ghost permisions

Extended ownership ghost permission

must be derived from some pointer
to an allocated object
self

Memory range between and the result
must be within bounds

If the computed offset is non-zero, then

19

impl<T: Sized> *const T {
 pub const unsafe fn add(self, count: usize) -> output

 {...}
}

Example: ptr.add()ptr.add()

self

allocation

ptr
computed offset

Advance ptr: *const T by by count elements of type self: *const T count

self

T

If the computed offset is non-zero, then
must be derived from some pointer

to an allocated object
self

Memory range between and the result
must be within bounds

20

impl<T: Sized> *const T {
 pub const unsafe fn add(self, count: usize) -> output

 {...}
}

impl<T: Sized> *const T {
 pub const unsafe fn add_verus(self, count: usize, Tracked(perm): Tracked<&PointsToRaw>) -> (output: Self)
 requires

 {...}
}

Example: ptr.add()ptr.add()

self

allocation

ptr
computed offset

Advance ptr: *const T by by count elements of type self: *const T count

alloc_start: usize
alloc_length: usize

provenance:

self

T

must be derived from some pointer
to an allocated object
self

Memory range between and the result
must be within bounds

21

impl<T: Sized> *const T {
 pub const unsafe fn add(self, count: usize) -> output

 {...}
}

impl<T: Sized> *const T {
 pub const unsafe fn add_verus(self, count: usize, Tracked(perm): Tracked<&PointsToRaw>) -> (output: Self)
 requires
 count * size_of::<T>() > 0

 {...}
}

Example: ptr.add()ptr.add()
If the computed offset is non-zero, then

self

allocation

ptr
computed offset

Advance ptr: *const T by by count elements of type self: *const T count

alloc_start: usize
alloc_length: usize

provenance:

self

==>

T

Memory range between and the result
must be within bounds

If the computed offset is non-zero, then

22

impl<T: Sized> *const T {
 pub const unsafe fn add(self, count: usize) -> output

 {...}
}

impl<T: Sized> *const T {
 pub const unsafe fn add_verus(self, count: usize, Tracked(perm): Tracked<&PointsToRaw>) -> (output: Self)
 requires
 count * size_of::<T>() > 0
 perm.provenance() == self@.provenance

 {...}
}

Example: ptr.add()ptr.add()

self

must be derived from some pointer
to an allocated object
self

allocation

ptr
computed offset

Advance ptr: *const T by by count elements of type self: *const T count

alloc_start: usize
alloc_length: usize

provenance:

self

==>

T

must be derived from some pointer
to an allocated object
self

If the computed offset is non-zero, then

23

impl<T: Sized> *const T {
 pub const unsafe fn add(self, count: usize) -> output

 {...}
}

impl<T: Sized> *const T {
 pub const unsafe fn add_verus(self, count: usize, Tracked(perm): Tracked<&PointsToRaw>) -> (output: Self)
 requires
 count * size_of::<T>() > 0
 perm.provenance() == self@.provenance
 && (self@.addr + count * size_of::<T>())
 < self@.provenance.alloc_start() + self@.provenance.alloc_len()
 && self@.addr >= self@.provenance.alloc_start(),
 {...}
}

Example: ptr.add()ptr.add()

self

allocation

ptr
computed offset

Memory range between and the result
must be within bounds

Advance ptr: *const T by by count elements of type self: *const T count

alloc_start: usize
alloc_length: usize

provenance:

self

==>

T

24

impl<T: Sized> *const T {
 pub const unsafe fn add(self, count: usize) -> output

 {...}
}

impl<T: Sized> *const T {
 pub const unsafe fn add_verus(self, count: usize, Tracked(perm): Tracked<&PointsToRaw>) -> (output: Self)
 requires
 count * size_of::<T>() > 0
 perm.provenance() == self@.provenance
 && (self@.addr + count * size_of::<T>())
 < self@.provenance.alloc_start() + self@.provenance.alloc_len()
 && self@.addr >= self@.provenance.alloc_start(),
 {...}
}

Example: ptr.add()ptr.add()
If the computed offset is non-zero, then

self

must be derived from some pointer
to an allocated object
self

allocation

ptr
computed offset

Memory range between and the result
must be within bounds

Advance ptr: *const T by by count elements of type self: *const T count

alloc_start: usize
alloc_length: usize

provenance:

self

==>

T
The only provenance information we needed

was alloc_start and alloc_length

Additional Wrinkle
Carrying around pointer/provenance information at the SMT level
may get expensive.

25

&T T

SMT encodingRust type

Ø Efficient
Ø Loses information

about the pointer
and its provenance

Potential challenge: Incorporating both encodings

&T &T

SMT encodingRust type

Ø Includes pointer and
provenance information

Ø Currently evaluating how
expensive

Original Encoding New Encoding

Verus Challenge: Ergonomically Incorporating
Spec/Proof Code into Existing Rust Code
• Need to use Verus versions of functions

• Rust currently lacks support for ghost code

26

ptr.add(count) ptr.add_verus(count), Tracked(&perm))

*block *ptr_ref(block, Tracked(&perm))

*ptr = 5 ptr_mut_write(p, Tracked(&mut perm), 5)

Proposed Solution: Ergonomically Incorporating
Spec/Proof Code into Existing Rust Code

• Proposal to move ownership ghost function parameters out of the
main function signature

• Support in progress for attribute-based syntax

27

pub fn ptr_mut_write<T>(ptr: *mut T, Tracked(points_to): Tracked<&mut PointsTo<T>>, v: T)

pub fn ptr_mut_write<T>(ptr: *mut T, v: T)
with_ghost_arg (points_to: &mut PointsTo<T>)

#[with_ghost_arg(points_to: &mut PointsTo<T>)]
pub fn ptr_mut_write<T>(ptr: *mut T, v: T)

Proposed Solution: Ergonomically Incorporating
Spec/Proof Code into Existing Rust Code

• Proposal to move ownership ghost function parameters out of the
main function signature

• Support in progress for attribute-based syntax

28

pub fn ptr_mut_write<T>(ptr: *mut T, Tracked(points_to): Tracked<&mut PointsTo<T>>, v: T)

pub fn ptr_mut_write<T>(ptr: *mut T, v: T)
with_ghost_arg (points_to: &mut PointsTo<T>)

#[with_ghost_arg(points_to: &mut PointsTo<T>)]
pub fn ptr_mut_write<T>(ptr: *mut T, v: T)

Need to do this in a way that still enables type-checking,
so we can keep borrow-checking our permissions

pub const fn run_utf8_validation(v_ref: &[u8]) -> (result: Result<(), Utf8Error>)
 ensures
 is_ok(&result) <==> valid_utf8(v_ref@),
{

}

Putting It Together: What Went Well

Successful verification of complex functions

29

1-byte

2-byte

3-byte

4-byte
Clean mathematical spec for UTF-8

Low-level automatic bitwise proofs

Metadata
Character bits

Low-level bitwise proofs
All assertions about bitwise operations were automatically proved
• Context of example
• Showing block of bytes is ASCII
• Endianness reasoning

30

x_lowx_high

& == 0 ==>
y_lowy_high

&&

x_high

& == 0

y_high

x_low

& == 0

y_low

Automatic

pub const fn run_utf8_validation(v_ref: &[u8]) -> (result: Result<(), Utf8Error>)
 ensures
 is_ok(&result) <==> valid_utf8(v_ref@),
{

}

Putting It Together: What Went Well

Successful verification of complex functions

31

Clean mathematical spec for UTF-8

Low-level automatic bitwise proofs

Pointer provenance reasoning

1-byte

2-byte

3-byte

4-byte

let block = ptr.add(index) as *const usize;
let zu = contains_nonascii(*block);

let block = ptr.add_verus(index, Tracked(perm.into_raw_shared())) as *const usize;
let tracked zu_sub_perm = perm.subrange(index, size_of::<usize>());
proof {

lemma_mod_eqv_0_trans(zu_sub_perm.ptr()@.addr as int,
size_of::<usize>() as int, align_of::<usize>() as int);

}
let tracked zu_usize_perm = zu_sub_perm.cast_points_to::<usize>();
let x = *ptr_ref(block, Tracked(zu_usize_perm));
let zu = contains_nonascii(x);

Pointer Provenance Reasoning via Ownership
Ghost Permissions

32Verified code in run_utf8_validation()

Unverified code in run_utf8_validation()

ptr: *const u8

let block = ptr.add(index) as *const usize;
let zu = contains_nonascii(*block);

let block = ptr.add_verus(index, Tracked(perm.into_raw_shared())) as *const usize;
let tracked zu_sub_perm = perm.subrange(index, size_of::<usize>());
proof {

lemma_mod_eqv_0_trans(zu_sub_perm.ptr()@.addr as int,
size_of::<usize>() as int, align_of::<usize>() as int);

}
let tracked zu_usize_perm = zu_sub_perm.cast_points_to::<usize>();
let x = *ptr_ref(block, Tracked(zu_usize_perm));
let zu = contains_nonascii(x);

Pointer Provenance Reasoning via Ownership
Ghost Permissions

33Verified code in run_utf8_validation()

Unverified code in run_utf8_validation()

unsafeptr: *const u8

let block = ptr.add(index) as *const usize;
let zu = contains_nonascii(*block);

let block = ptr.add_verus(index, Tracked(perm.into_raw_shared())) as *const usize;
let tracked zu_sub_perm = perm.subrange(index, size_of::<usize>());
proof {

lemma_mod_eqv_0_trans(zu_sub_perm.ptr()@.addr as int,
size_of::<usize>() as int, align_of::<usize>() as int);

}
let tracked zu_usize_perm = zu_sub_perm.cast_points_to::<usize>();
let x = *ptr_ref(block, Tracked(zu_usize_perm));
let zu = contains_nonascii(x);

Pointer Provenance Reasoning via Ownership
Ghost Permissions

34Verified code in run_utf8_validation()

Unverified code in run_utf8_validation()

ptr: *const u8

• Mathematical specification
language
• Automation
• Bit-level reasoning
• Ergonomically integrate

spec/proof code into existing
Rust code
• Provenance-specific pointer

reasoning

ü

ü
ü
o

o

Recap: Essential Verification Tool Features

35

üVerus has pointer reasoning via
ownership ghost permissions

üAdded provenance information
to permissions

o Next step: experiment with more
pointer manipulations

o Proposal to decouple executable and
ownership ghost function parameters

o Support in progress for attribute-based
syntax

Recap: Key Discussion Question

How to add abstraction over the provenance model?

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under
Grant No. DGE2140739. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science Foundation.

We would love to hear your
thoughts on the best approach!

Thank you!

root

ref1 ref2

ref3

Abstraction

36

Elanor Tang
elanor@cmu.edu

