Initial Steps Toward
Verifying the Rust Standard Library
Using Verus

Elanor Tang, Travis Hance, and Bryan Parno

Carnegie Mellon University

Why Verify the Rust Standard Library?

* Safe interface
* Unsafe implementation

Want to provide safety and correctness guarantees

Greater odds Greater Impact extends
of incorrect severity of to most Rust
implementation mistake code

Safety Depends on Correctness

pub const fn from utf8(v: &[u8]) —> Result<&str, Utf8Error> {

match|run_utf8_ validation(v)]{ N Checks to see if a sequence of

0k(_) = 1) S
// SAFETY: validation succeeded. bytes is in UTF-8 format
Ok([[msafe { from_utf8_unchecked(v) |}) s IRl RN GETIEEI RO alel])

from_utf8 _unchecked()

¥

Err(err) => Err(err),

pub const unsafe fn from_utf8_unchecked(v: &[u8]) —> &str {
// SAFETY: the caller must guarantee that the bytes v are valid UTF-8.

// Also relies on &str and &[u8] having the same layout.

unsafe i mem::transmute(v) ’ 4 Performs the unsafe operation

; transmute()

3

Safety Depends on Correctness

pub const fn from_utf8(v: &[u8]) —> Result<&str, Utf8Error> {

match run_utf8_ validation(v) { N Checks to see if a sequence of

Ok(_) => { g
// SAFETY: validation succeeded. bytes is in UTF-8 format
Ok(unsafe { from_utf8_unchecked(v) }) sy (IR ER R EEI-Ri0a[e18[e])

from_utf8 _unchecked()

¥

Err(err) => Err(err),

pub const unsafe fn from_utf8_unchecked(v: &[u8]) —> &str {
// SAFETY: the caller must guarantee that the bytes v are valid UTF-8.

// Also relies on &str and &[u8] having the same layout.

unsafe { mem::transmute(v) } 4 Performs the unsafe operation

; transmute()

4

Safety Depends on Correctness

Safety of mem: : transmute(v) depends on
correctness of run _utf8 validation(v)

Initial Target: Verifying the String Library

Enables greater security
Presents nontrivial verification challenges

CVE-2020-36323 ROIRoLED & ViewJSON | B User Guide

CVE-2020-36317 | ruststen B View JSON | B User Guide

Re

Collapse all

Required CVE Record Information

CNA: MITRE Corporation

D¢
Published: 2021-04-11 Updated: 2021-04-11

In{
Dacrrintiann

Challenges: Verifying the String Library

Provenance: Captures what

you are allowed to do with a

pointer based on the source
it was derived from

* Reasoning about pointer
provenance

Snippet from string standard library

unsafe |
let block =| ptr.add(index))as *const usize; Will talk about why
¥) itis hard later
Unsafe, precondition from Rust Will talk more
documentation involves the about add () later

provenance of ptr

Challenges: Verifying the String Library

R . . . Metadata
[J
easoning about pointer byte C Character bits
provenance

* Complex UTF-8 reasoning 2-byte l

* Variable-width encoding of

characters S-byte . I
« Complicated interpretation of 4-byte - I I

byte values

Challenges: Verifying the String Library

]] . Metadata
* Reasoning about pointer

provenance

Character bits

* Complex UTF-8 reasoning Start of 1-byte character

* Variable-width encoding of
characters

 Complicated interpretation of
byte values

Start of 2-byte character

Start of 3-byte character

* Low-level bit manipulation Start of 4-byte character

Continuation byte

Challenges: Verifying the String Library

Solutions apply to verifying other Rust standard libraries

Overview

* Verus
* Ownership ghost permissions to reason about pointers

* Challenges
* Key challenge: Handling pointer provenance

* Verus challenge: Ergonomically incorporating spec/proof code into
existing Rust code

 What Went Well

* Successful verification of complex functions

11

Our Approach: Verus

e Automated SMT-based verification tool

* Uses ownership ghost permissions which are borrow-checked
to safely manipulate pointers

(\
: ptr:*mut T I
b
OOSPLA23 P e
N e e e e _!
Verus: Verifying Rust Programs using Linear Ghost Types
ANDREA LATTUADA®, VMware Research, Switzerland
TRAVIS HANCE, Carnegie Mellon University, USA 1 H
CHANHEE CHO, Carnegie Mellon Universi}t,y, USA Tra c k I nfo rm atl ona .bo Ut
MATTHIAS BRUN, ETH Zurich, Switzerland Wh at th e po inter po ints to

ISITHA SUBASINGHET, UNSW Sydney, Australia
Yl ZHOU, Carnegie Mellon University, USA

JON HOWELL, VMware Research, USA

BRYAN PARNO, Carnegie Mellon University, USA
CHRIS HAWBLITZEL, Microsoft Research, USA

The Rust programming language provides a powerful type system that checks linearity and borrowing, allowing
code to safely manipulate memory without garbage collection and making Rust ideal for developing low-level,
high-assurance systems. For such systems, formal verification can be useful to prove functional correctness
properties beyond type safety. This paper presents Verus, an SMT-based tool for formally verifying Rust
programs. With Verus, programmers express proofs and specifications using the Rust language, allowing proofs 12
to take advantage of Rust’s linear types and borrow checking. We show how this allows proofs to manipulate
linearly typed permissions that let Rust code safely manipulate memory, pointers, and concurrent resources.

Heap

Ownership Ghost Permissions

0x1000 -
0x1004 UnInit
Stack 0x1008 -
Signifies OV\{ne.rship P = 0x1004 0x100c —
ghost permission
fn main() A
let (p, (mut points_to)) = allocate::<u32>(4);

Verus’ perspective

I3 p = 0x1004

points_to = {
ptr: 0x1004,
value: UnInit,

(example simplified for demonstration purposes) 13

Heap

Ownership Ghost Permissions

0x1000 -
0x1004 5
Stack 0x1008 -
Signifies ownership P = 0x1004 0x100c —
ghost permission
fn main() {
let (p, Tracked(mut points_to)) = allocate::<u32>(4); ,]
ptr_mut_write(p, Tracked(&mut points_to), 5); Verus’ perspective
I3 p = 0x1004

points_to =
ptr: 0x1004,

value: 5,

(example simplified for demonstration purposes) 14

Features of Ownership Ghost Permissions

—

* Mutability of permission matches
mutability of the pointer operation. Enforced by borrow-checking

S—

e Lifetime of permission is tied to the permissions

lifetime of allocation. _

* Erase permissions during compilation.

fn main() {

let (p, (mut points_to)) = allocate::<u32>(4);
ptr_mut_write(p, (&points to), 5);
deallocate(ptr, 4 (points_to));
ptr_mut_write(p, (&mut points to), 5);

}

(example simplified for demonstration purposes) 15

Verus: Benefits and Limitations

v'Can reason about safe and unsafe code

v'"Has the automation to scale (~250K total Verus LOC, codebases
up to 60K LOC)

X Needs more features to handle pointer provenance reasoning

SOSP’24

™ Verus: A Practical Foundation for Systems Verification
Andrea Lattuada* Travis Hance Jay Bosamiya'
MPI-SWS Carnegie Mellon University Microsoft Research
Matthias Brun Chanhee Cho Hayley LeBlanc
ETH Zurich Carnegie Mellon University University of Texas at Austin
Pranav Srinivasan Reto Achermann Tej Chajed
University of Michigan University of British Columbia University of Wisconsin-Madison
Chris Hawblitzel Jon Howell Jacob R. Lorch
Microsoft Research VMware Research Microsoft Research
Oded Padon* Bryan Parno
‘Weizmann Institute of Science Carnegie Mellon University

CCS Concepts: * Software and its engineering — Formal
software verification

16
Abstract

Key Challenge: Handling Provenance

* Rust has no formal provenance model

* Many provenance models are complicated
* E.g., tree and stacked borrows

“The exact structure of provenance is not S
yet specified, but the permission defined ref3

by a pointer’s provenance has a spatial
component, a temporal component, and

a mutability component.”
—Rust pointer documentation

Visualization source: Tree Borrows preprint 17

Our Solution: Handling Provenance

Key idea: Abstract over the provenance model

v'Spatial

==

vTemporal

vMutability

Taken care of by Rust’s
borrow-checker on the
lifetime and mutability
of ghost permisions

- - - . S O e . .y

_ Extend ownership ghost permissions
with provenance information

e o o o o s o R S R E R S RS R R RS R R R O

ptr: *mut T
value: T

S N N N R S R R N R R S R R S Ry,

alloc_start: usize
alloc_length: usize |

——————————————————————————

provenance:

oS T ————

o o o o e e e M S e e Ee M S e e e e s e o P

Extended ownership ghost permission

18

If the computed offset is non-zero, then

” self must be derived from some pointer

Example: pt r | add () to an allocated object

e Memory range between self and the result

allocation must be within bounds

|
l 1

—
7

. ,| self

Advance self: xconst T by count elementsoftype T

impl<T: Sized> xconst T
pub const unsafe fn add(self, count: usize) —> output

If the computed offset is non-zero, then

. a self must be derived from some pointer
Example. pt r | add () to an allocated object

9 Memory range between self and the result
must be within bounds

allocation
| . |
/ S
/ computed offset
ptr
. ,| self

Advance self: xconst T by count elementsoftype T
impl<T: Sized> *const'T,(///”’————_____'

pub const unsafe fn add_verus(self, count: usize, Tracked(perm): Tracked<&PointsToRaw>) —> (output: Self)

requires

——————————————————

[§ . 1
1 alloc_start: usize :
1

——— -

If the computed offset is non-zero, then

. a self must be derived from some pointer
Example. pt r | add () to an allocated object

9 Memory range between self and the result
must be within bounds

allocation
| . |
/ S
/ computed offset
ptr
. ,| self

Advance self: xconst T by count elementsoftype T
impl<T: Sized> *const'T,(///”’————_____'

pub const unsafe fn add_verus(self, count: usize, Tracked(perm): Tracked<&PointsToRaw>) —> (output: Self)

requires ;
count *x size_of::<T>() > 0 | '—“l_l _______ S
==> I provenance: | a oc_staﬂ"usge :
| I alloc_length: usize !
T = e
{...}

If the computed offset is non-zero, then
v @ :cif mustbe derived from some pointer

Example: pt r | add () to an allocated object

9 Memory range between self and the result
must be within bounds

allocation
| . |
/ S
/ computed offset
ptr
. ,| self

Advance self: xconst T by count elementsoftype T
impl<T: Sized> *const'T,(///”’————_____'

pub const unsafe fn add_verus(self, count: usize, Tracked(perm): Tracked<&PointsToRaw>) —> (output: Self)

requires ,
count x size_of::<T>() > @ I {";ﬁaz';&i{iL;;é'1
—] —) I provenance: - ' . I

perm.provenance() self@.provenance : | alloc_length: usize |
dozol

If the computed offset is non-zero, then
v @ :cif mustbe derived from some pointer

Example: pt r | add () to an allocated object

v 9 Memory range between self and the result
must be within bounds

allocation
| . |
/ S
/ computed offset
ptr
. ,| self

Advance self: xconst T by count elementsoftype T
impl<T: Sized> *const'T,(///”’————_____'

pub const unsafe fn add_verus(self, count: usize, Tracked(perm): Tracked<&PointsToRaw>) —> (output: Self)

requires ;
count *x size_of::<T>() > 0 I "’5662’5&&%1;;25'“

1 . 1

==> perm.provenance() == self@.provenance I provenance: — -~

. | I alloc_length: usize !

&&[(self@.addr + count x size_of::<T>()) T s bl

< self@.provenance.alloc_start() + self@.provenance.alloc_len()
&&\self@.addr >= self@.provenance.alloc_start(),

{...}

Example: ptr.add()

The only provenance information we needed
wasalloc_startandalloc_length

Additional Wrinkle

Carrying around pointer/provenance information at the SMT level
may get expensive.

Original Encoding New Encoding
—(] —
Rust type SMT encoding Rust type SMT encoding
» Efficient » Includes pointer and
» Loses information provenance information

about the pointer » Currently evaluating how
and its provenance expensive

Potential challenge: Incorporating both encodings

25

Verus Challenge: Ergonomically Incorporating
Spec/Proof Code into Existing Rust Code

e Need to use Verus versions of functions

ptr.add(count) w==sss) ptr,add verus(count), (&perm))
xblock === xptr_ref(block, (&perm))
xptr = 5 ==y ptr_mut_write(p, (&mut perm), 5)

* Rust currently lacks support for ghost code

26

Proposed Solution: Ergonomically Incorporating
Spec/Proof Code into Existing Rust Code

pub fn ptr_mut_write<T>(ptr: xmut T, Tracked(points_to): Tracked<&mut PointsTo<T>>, v: T)

* Proposal to move ownership ghost function parameters out of the
main function signature

pub fn ptr_mut_write<T>(ptr: xmut T, v: T)
with_ghost_arg (points_to: &mut PointsTo<T>)

* Supportin progress for attribute-based syntax

#[with_ghost_arg(points_to: &mut PointsTo<T>)]
pub fn ptr_mut_write<T>(ptr: xmut T, v: T)

27

Proposed Solution: Ergonomically Incorporating
Spec/Proof Code into Existing Rust Code

Need to do this in a way that still enables type-checking,
so we can keep borrow-checking our permissions

Putting It Together: What Went Well e it

1-byte I:
Successful verification of complex functions 2-byte I 1
3-byte I] [
Clean mathematical spec for UTF-8 4-byte -: I I I

pub const fn run_utf8 validation(v_ref: &[u8]) —> (result: Result<(), Utf8Error>)

ensures
is_ok(&result) <==> valid_utf8(v_refa@),

Low-level automatic bitwise proofs

Low-level bitwise proofs

All assertions about bitwise operations were automatically proved

* Context of example
* Showing block of bytes is ASCII

* Endianness reasoning
& == 0
& == 0 % &&
Automatic
& == 0

Putting It Together: What Went Well

Successful verification of complex functions

Clean mathematical spec for UTF-8

1-byte -

2-byte - -

3-oyte L]]I

a-oye I |1

pub const fn run_utf8_ validation(v_ref: &[u8]) —> (result: Result<(), Utf8Error>)

ensures
is_ok(&result) <==> valid_utf8(v_refQ@),

Low-level automatic bitwise proofs

Pointer provenance reasoning

31

Pointer Provenance Reasoning via Ownership

I I ptr: xconst u8
Ghost Permissions L reons

let block = ptr.add(index) as *const usize;

let zu = contains_nonascii(xblock);

Unverified code in run_utf8_validation()

let block = ptr.add_verus(index, Tracked(perm.into_raw_shared())) as *const usize;

let tracked zu_sub_perm = perm.subrange(index, size_of::<usize>());
proof {

lemma_mod_eqv_0_trans(zu_sub_perm.ptr()@.addr as int,

size of::<usize>() as int, align_of::<usize>() as int);

¥
let tracked zu_usize_perm = zu_sub_perm.cast_points_to::<usize>();
let x = xptr_ref(block, Tracked(zu_ usize perm));
let zu = contains_nonascii(x);

Verified code in run_utf8_validation() -

Pointer Provenance Reasoning via Ownership
Ghost Permissions PRIt unsafe

let block = ptr.add(index) as _xkconst usize;
let zu = contains_nonasci{(xblock);

Unverified code in run_utf8_validation()

let block = ptr.add verus(index, Tracked(perm.into raw shared())) as xconst usize;
Aet tracked zu_sub_perm = perm.subrange(index, size_of::<usize>());)
proof {
lemma_mod_eqv_0_trans(zu_sub_perm.ptr()@.addr as int,
size of::<usize>() as int, align_of::<usize>() as int);

}

\let tracked zu_usize_perm = zu_sub_perm.cast_points_to::<usize>(); -/
let x = xptr_ref(block, Tracked(zu_ usize perm));
let zu = contains_nonascii(x);

Verified code in run_utf8_validation() -

Pointer Provenance Reasoning via Ownership

I I ptr: xconst u8
Ghost Permissions L reons

let block = ptr.add(index) as *const usize;

let zu = contains_nonascii(xblock);

Unverified code in run_utf8_validation()

let block = ptr.add_verus(index, Tracked(perm.into_raw_shared())) as *const usize;
let tracked zu_sub_perm = perm.subrange(index, size_of::<usize>());
proof {
lemma_mod_eqv_0_trans(zu_sub_perm.ptr()@.addr as int,
size of::<usize>() as int, align_of::<usize>() as int);

¥

let tracked zu_usize_perm = zu_sub_perm.cast_points_to::<usize>();
let x = xptr_ref(block, Tracked(zu_usize perm));

let zu = contains_nonascii(x);

Verified code in run_utf8_validation() ”

Recap: Essential Verification Tool Features

(
vMath ical ifi . o Proposal to decouple executable and
athematical specitication ownership ghost function parameters
language o Support in progress for attribute-based
v/Automation syntax
. . - J
vBit-level reasoning
O Ergonomically integrate K/Verus ha§ pointer reas_oni.ng via\
spec/proof code into existing ownership ghost permissions

Rust code v'Added provenance information
to permissions

OProvenance_SpeCIﬂC pointer o Next step: experiment with more

reasoning \‘ \ pointer manipulations /

35

Elanor Tang
elanor@cmu.edu

Recap: Key Discussion Question

How to add abstraction over the provenance model?

Abstraction

We would love to hear your
thoughts on the best approach!

Thank you!

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under
Grant No. DGE2140739. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the 36
author(s) and do not necessarily reflect the views of the National Science Foundation.

